Interested parties are hereby notified that an application has been received for a Department of the Army permit for certain work in Waters of the United States, on federal land, and potentially affecting a federal flood control structure (levee) as described below and shown on the attached drawings (7 of 7, dated March and April 2011).

APPLICANT - Port of Lewiston, 1626 6th Avenue North, Lewiston, Idaho 83501, telephone (208) 743-5531, contact Ms. Tabitha Reeder, BergerABAM, Vancouver, Washington 98660. For information from the U.S. Army Corps of Engineers, contact Mr. James Joyner at email: PortofLewiston-PN@usace.army.mil.

LOCATION - Clearwater River. The project is located at the existing Port of Lewiston facilities within the City of Lewiston, near U.S. Highway 12 in the Northeast ¼ of the Northwest ¼ of Section 31, Township 36 North, Range 5 West, Boise Meridian (46.4247’N/-117.0163’W), Washington-Clarkston, USGS Quadrangle, in Nez Perce County, Idaho. To access the site from the south, proceed north on U.S. Highway 12 across the Clearwater River, turn left (West) on 3rd Avenue North, approximately ¼ mile to the site. Access is restricted to the Port’s facilities. Any attempt to visit the project site should be coordinated with the applicant.

WORK - Applicant proposes to discharge an estimated 3900 cubic yards of sand and gravel fill material, of which approximately 2400 cubic yards would be below the Ordinary High Water Mark of the Clearwater River. The proposed project would affect approximately 0.12 acres of waters of the United States to construct a dock extension. Additional activities include:

1) The discharge of approximately 200 lineal feet of AZ 19-700 metal sheet piling to contain new dock extension fill.

2) The discharge of approximately 25 fender piles along the face and side of the new dock extension to construct a fendering system on the expanded dock section.

3) Removal and relocation of an existing mooring dolphin to a location approximately 115 feet west of the expanded dock.

Construction will consist of relocating the existing circular sheet piling mooring dolphin, extending the sheet piling bulkhead that forms the dock, installing tiebacks and deadmen, backfilling the dock area to grade,
regrading the adjacent yard and installing the new storm drainage system, paving, and installing the fender and barge handling systems. Approximately 3,900 cubic yards of backfill will be used for the expanded dock.

The first task is demolishing the existing cylindrical mooring dolphin by removing the concrete cap and pulling the sheet piling. The sheet piling will be removed by pulling with a crane utilizing a vibratory extractor. Granular fill will be released behind the face of the dock extension sheet piling and will be utilized as part of the backfill for the extended dock.

Approximately 200 lineal feet of AZ 19-700 sheet piling will be installed for the dock extension using templates and a vibratory hammer. Fill will be placed behind the new sheet piling bulkhead to the level of the tiebacks. This fill will be placed through the water behind the bulkhead so no dewatering is anticipated. Tie rods and concrete deadmen will be installed on the fill and the remainder of the fill will be placed and compacted to the level of the bottom of the pavement. After tensioning the tie rods, the concrete pavement along the front of the dock will be placed. After regrading the adjacent apron for proper drainage and installing the oil/water separator, the remainder of the dock and regraded yard will be paved with asphalt concrete paving.

Fendering System Construction

The construction of a fendering system on the expanded dock is also included, as is the relocation of the existing west mooring dolphin at the terminal. The fendering system prevents damage to the vessels and the terminal when barges are berthed and moored at the terminal. It also provides protection and proper standoff for barges held against the dock end-on by tugs to load/unload Roll-On Roll-Off (RORO) cargoes. The west mooring dolphin will be removed and relocated 115 feet further west of the widened dock so that two container barges can be tied up end to end at the terminal. Also as part of the project, a defunct barge winch system will be replaced. The replacement barge handling system will enable a single operator to position barges along the face of the dock without tug assist.

The fender system will begin with the installation of 25 fender piles consisting of 12.5-inch x 0.5-inch steel pipes. Rubber fenders would then be attached to the face of the concrete cap along the new sheet pile wall. Piles will be lifted by a crane and installed by a land-based vibratory pile driver. Each pile will be driven approximately 10 feet into the existing riverbed. Impact proofing is not anticipated because there is no need for substantial vertical capacity. After the piles have been set to the established elevation, any excess pile length will be removed. ACZA-treated timber wales and chocks will be installed with steel hardware and the access ladders will be installed.

CONSTRUCTION PERIOD - Applicant proposes to start construction on December 1, 2011 and complete the work within 2 ½ months (February 15, 2012). In-water work is proposed to occur within the winter work period recommended by the Idaho Department of Fish and Game from December 1 - February 15. The permit would authorize construction for a period of 2 years.

PURPOSE - The purpose of the proposed work is to increase efficiency of the operation, allow berthing of multiple barges, and accommodate loading and unloading of oversized cargo.

ADDITIONAL INFORMATION - The uplands to the northeast of the dock are proposed to be paved with a total of 31,440 square feet of asphalt concrete with an additional 4,800 square feet of concrete to be poured to the southwest, for a total of 36,240 square feet of concrete. This amounts to an increase of 8,377 square feet over the existing impervious surface for the dock expansion and 1,263 square feet of new impervious surface to unimpacted areas adjacent to the existing dock, for a total of 9,640 square feet of new impervious surface.

Additionally, an existing pole-mounted light adjacent to the dock on the levee apron will be relocated, re-grading and re-paving on the periphery of the dock widening will be done, and storm drainage modifications will be made to channel runoff from both the new and existing areas of the dock to a new oil-water separator.
which will discharge into the existing storm drain system. The project will result in a 9,640 square feet increase in impervious surface and will generate some additional stormwater. Stormwater will be channeled to two new catch basins and treated with an oil/water separator before being discharged into the existing stormwater system for the Port container yard. The existing bulkhead on the original dock structure will be modified by raising it to provide adequate pavement slope for drainage.

APPLICANT PROPOSED MITIGATION - The applicant has not proposed compensatory mitigation. The applicant expects only temporary effects from construction and does not anticipate permanent effects. The applicant believes the proposed project minimizes potential impacts to the maximum extent practicable through use of a vibratory hammer, by installing the smallest and least number of piles needed, and proposing to conduct work within the in-water work period of December 1-February 15. The applicant does not believe that the project will result in functional loss of the Clearwater River.

AQUATIC RESOURCE DESCRIPTION - The Clearwater River at the project site varies between 500 and 1000 feet wide. The riverbed substrate in the project area largely consists of sands, silts, and clays, while the shoreline is armored with riprap. This section of the river is largely devoid of riparian vegetation due to past and current land uses, including industrial/port uses.

ANTICIPATED IMPACTS ON AQUATIC ENVIRONMENT - The permanent impact of the project to the aquatic environment would consist of filling approximately 0.12 acres of river channel to extend the dock 150 lineal feet and relocating an existing mooring dolphin to the west. The temporary impacts to the aquatic environment would consist of potential sedimentation and noise resulting from demolition and construction.

OTHER AUTHORIZATIONS - Other authorization obtained or requested include a stream alteration permit from the Idaho Department of Water Resources.

WATER QUALITY CERTIFICATION - This will also serve as public notice that Idaho Department of Environmental Quality (IDEQ) is evaluating whether to certify that the discharges of dredged and fill material proposed for this project will not violate existing water quality standards. A Department of the Army permit will not be issued until water quality certification has been issued or waived by the IDEQ, as required by Section 401 of the Clean Water Act. If water quality certification is not issued, waived, or denied within 60 days of this public notice date, and an extension of this period is not granted to IDEQ, certification will be considered waived. Additionally, within (30) days of this public notice, any person may provide written comments to IDEQ and/or request in writing that IDEQ provide them notice of preliminary 401 certification decision. Comments concerning certification for this project should be mailed to: Idaho Department of Environmental Quality, Lewiston Regional Office, 1118 “F” Street, Lewiston, Idaho 83501.

CULTURAL RESOURCES - Coordination is currently being conducted with the office of the Idaho State Historic Preservation Officer and the appropriate Tribal Historic Preservation Officers to determine if this activity will affect a site that is listed on the National Register of Historic Places, or a site that may be eligible for listing on the Register.

TRIBAL TREATY RIGHTS AND INTERESTS - Federal agencies acknowledge the federal trust responsibility arising from treaties, statutes, executive orders, and the historical relations between the United States and American Indian Tribes. The federal government has a unique trust relationship with federally recognized American Indian Tribes.

The USACE has a responsibility and obligation to consider and consult on potential effects to Tribal rights, uses, and interests. Comment and consultation is being requested from/with The Confederated Tribes of the Colville Reservation, The Nez Perce Tribe of Idaho, The Spokane Tribe, and The Confederated Tribes of the Umatilla Reservation.
ENDANGERED SPECIES - The project is within the known or historic range of Chinook salmon (*Oncorhynchus tshawytscha*), steelhead (*Oncorhynchus mykiss*) and bull trout (*Salvelinus confluentus*). Formal consultation will be conducted with the National Marine Fisheries Service (NMFS) and the U.S. Fish and Wildlife Service to determine the effect the proposed project may have on species designated as endangered or threatened or their critical habitat, under the Endangered Species Act of 1973 (87 Stat. 844). Any comments they may have concerning endangered or threatened fish, wildlife or plants or their critical habitat will be considered in our final assessment of the described work.

ESSENTIAL FISH HABITAT - The Magnuson-Stevens Fishery Conservation and Management Act, as amended by the Sustainable Fisheries Act of 1996, requires all Federal agencies to consult with NMFS on all actions, or proposed actions, permitted, funded, or undertaken by the agency, that may adversely affect Essential Fish Habitat (EFH). The project area is within the known range of Chinook salmon. Coordination is currently being conducted with the NMFS to determine the affect of the proposed project on essential fish habitat for Chinook salmon.

ENVIRONMENTAL IMPACT STATEMENT - Preliminary review indicates the activity will not require preparation of an Environmental Impact Statement (EIS). An Environmental Assessment will be prepared to determine if there are significant impacts requiring preparation of an EIS. Comments provided in response to this Public Notice will be considered in preparation of an Environmental Assessment.

AUTHORITY - This permit will be issued or denied under the authority of Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act. The applicant is also seeking approval from the Corps under 33 USC 408 (Section 408). The Section 408 review and approval would be for potential impacts the proposed dock expansion may have on the federal flood control levee at the site. A Real Estate review is also required to amend an existing easement (No. DACW68-2-75-39) between the Corps and the Port of Lewiston.

TECHNICAL REVIEW FUNDING DISCLOSURE - The Corps will accept funds from the applicant as reimbursable expenses under the provisions at 10 USC 2695 associated with its Real Estate review for amending the easement associated with the lands subject to the dock expansion project scope. The Section 408 review is required in and of itself, but is also a necessary part of the Real Estate review to amend the existing easement (No. DACW68-2-75-39) between the Corps and the Port. Use of these funds will not impact impartial decision making with respect to permits, either substantively or procedurally.

EVALUATION - The decision whether to issue a permit will be based on an evaluation of the probable impact, including cumulative impacts, of the proposed activity on the public interest. This decision will reflect the national concern for both protection and utilization of important resources. The benefit, which reasonably may be expected to accrue from the proposal, must be balanced against its reasonably foreseeable detriments. All factors which may be relevant to the proposal will be considered including the cumulative effects thereof, among those are conservation, economics, aesthetics, general environmental concerns, wetlands, historic properties, fish and wildlife values, flood hazards, floodplain values, land use, navigation, shoreline erosion and accretion, recreation, water supply and conservation, water quality, energy needs, safety, food and fiber production, mineral needs, consideration of property ownership and, in general, the needs and welfare of the people. In addition, our evaluation will include application of the EPA Guidelines (40 CFR 230) as required by Section 404(b)(1) of the Clean Water Act.

CONSIDERATION OF PUBLIC COMMENTS - The Corps of Engineers is soliciting comments from the public; Federal, State, and local agencies and officials; Indian Tribes; and other interested parties in order to consider and evaluate the impacts of this proposed activity. Any comments received will be considered by the Corps of Engineers to determine whether to issue, modify, condition or deny a permit for this proposal. To make this decision, comments are used to assess impacts on endangered species, historic properties, water quality, general environmental effects, and the other public interest factors listed above. Comments are used in
the preparation of an Environmental Assessment and/or the determination whether to prepare an Environmental Impact Statement pursuant to the National Environmental Policy Act. Comments are also used to determine the need for a public hearing and to determine the overall public interest of the proposed activity.

PUBLIC HEARING - Any person may request in writing, within the comment period specified in this notice, that a public hearing be held to consider this proposed activity. Requests for a public hearing shall state specific reasons for holding a public hearing.

COMMENT AND REVIEW PERIOD - Interested parties are invited to provide comments on the proposed activity, which will become a part of the record and will be considered in the decision. Comments should be mailed to:

US Army Corps of Engineers
Idaho Falls Regulatory Field Office
900 N Skyline Drive, Suite A
Idaho Falls, Idaho 83402-1700

Or submitted via e-mail to: PortofLewiston-PN@usace.army.mil

Comments should be received not later than the comments due date of this notice to receive consideration.

David B. Barrows
Chief, Regulatory Division
Proposed Construction of Barge Dock Extension

Section - Typical Dock Extension

Purpose: Provide expanded barge docking facilities for container yard.

FT.

Distance between piles and piles.

Existing rock fill.

To level of the rock

Place boarder foundation with level

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.

Existing rock fill.

To level of the rock

Placing boarder foundation

Distance between piles and piles.
PURPOSE: PROVIDE EXPANDED BARGE DOCKING FACILITIES FOR CONTAINER YARD.

DATUM: NAD 29, OHWM = 738 FT.
LAT: 45°25'29" LONG: 117°0'57"

ADJACENT PROPERTY OWNERS:
REIDNER, LYONS, CITY OF LEWISTON,
US ARMY CORP OF ENGINEERS

FIGURE 4 - DOLPHIN DETAILS

PROPOSED CONSTRUCTION OF BARGE DOCK EXTENSION

File No. NWW-2010-213-W04
IN: CLEARWATER RIVER AT RM 1
COUNTY OF: NEZ PERCE
APPLICATION BY: PORT OF LEWISTON
SHEET 4 OF 7
MARCH 2011
Photo 1: Aerial photo of Port of Lewiston and surrounding area.

Photo 2: Photo looking southeast upstream of the Clearwater River toward the Port of Lewiston Dock. Notice the abundance of rip-rap along the shoreline with no complex habitat features.

Photo 3: Photo looking southeast upstream along existing Port of Lewiston dock. Photo depicts fender system repair that took place during summer 2010.

Photo 4: Photo looking southeast upstream of the Clearwater River at west end of the Port of Lewiston Dock. Notice the large crane used for loading and unloading ships depicting heavy industry.

Photo 5: Photo looking northwest downstream along existing Port of Lewiston Dock showing section where the dock will be extended.

PURPOSE: PROVIDE EXPANDED BARGE DOCKING FACILITIES FOR CONTAINER YARD.

DATUM: NAD 27, OHWM= 738 FT.
LAT: 46°25'29" LONG: 117°05"'

ADJACENT PROPERTY OWNERS:
CARGILL, LEWIS, EDDINS, MCCANN,
CITY OF LEWISTON,
US ARMY CORP OF ENGINEERS

FIGURE 5 - PHOTOGRAPHS

PROPOSED CONSTRUCTION OF BARGE DOCK EXTENSION

File No. NWW-2010-213-W04
IN: CLEARWATER RIVER AT RM 1
COUNTY OF: NEZ PERCE
APPLICATION BY: PORT OF LEWISTON
STATE OF: ID
SHEET 5 OF 7
MARCH 2011
FIGURE 6 - ACTION AREA

PORT OF LEWISTON

1626 6TH AVENUE N
LEWISTON, IDAHO 83501
208-742-5531

PROPOSED CONSTRUCTION OF BARGE DOCK EXTENSION

File No. NWW-2010-213-W04

IN: CLEARWATER RIVER AT RM 1
COUNTY OF: NEZ PERCE
APPLICATION BY: PORT OF LEWISTON
STATE OF: ID
MARCH 2011

PURPOSE: PROVIDE EXTENDED BARGE DOCKING FACILITIES FOR CONTAINER YARD.

DATUM: NAD 27, CHWM 379 FT.
LAT: 46°25'39" LONG: 117°0'57"

ADJACENT PROPERTY OWNERS:
REIDNER, LYONS, CITY OF LEWISTON,
US ARMY CORP OF ENGINEERS

Project Footprint
- Sedimentation
- Shoreline
- Terrestrial Noise (1600 ft)
- Underwater Noise

0 0.25 0.5 1 Miles